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THERMODYNAMICS ,_NT KINETICS OF PACK ALLDIINIDE

COATING FO_._TION ON IN-100

by S. R. Levine and R. M. Caves

National Aeronautics and Space AdmJnistratlon
Lewis Research Center

Cleveland, Ohio

ABSTraCT

An investigation of the effects of pack variables on the formation

of aluminide coatings on nlckel-base superalloy IN-IO0 was conducted.

Also, the thermody_namic_ and kinetics of coating formation were analyzed.

Observed coating weights were in &ood agreement with predictions made from

the analysis. Pack temperature rather than pack aluminum activity con-

trois the principal coating phase formed. In I weight percent alumlnumpacks,

aluminum weight gains were related to the halide pack activator as follows:

F _ CI > Br > I. Solid-state nickel diffusion controlled co_ing forma-

tion from sodium fluoride and chloride and ammonium fluoride activated

packs. In other ammonium and sodium halide activated i weight percent

aluminum packs, gaseous diffusion controlled coating formation.

SUMMARY

The effect of variation of pack activators, compositions, tempera-

ture, and time on the thickness and structure of alumlnide coatings formed

on the nickel-base superalloy IN-IO0 was studied in one-step packs con-

taining aluminum at unit activity. Times were varied from 4 to 24 hours

and temperatures were varied from 982 ° to 1149 ° C in N_CI activated packs.

The other halides of sodium and the ammonium halides were primarily used

to activate 1093 ° C, 16-hour packs.

In addition, an analysis of the thermodynamics and kinetics of alu-
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minizing was carried out. The mechanismof coating formatiol_ i_ each pack

was established from agreementbetween observed coating weights and pre-

dictions ba_ed on a gaseeusdiffusion model and published diffusion data

for the Ni-Ai system. Pack temperature rather than pack aluminumactivity

controls the principal coating phase formed.

The halides ranked according to aluminum weight gain in 1 weight

percent AI packs are F _ CI _ Br _ I. Solld-state nickel diffusion con-

trolled the rate of coatimg formation in fluoride activated packs. Gas-

eous diffusion controlled the rate of coating formation in I weight per-

cent A1 bromide and iodide and NH4CI activated packs. In NaCI activated

packs containing 1 weight percent Al the _.bility of the substrate to

suppiy nickel appeared to be in balance with the ability of the pack to

_upply aluminum. However, the observed ra_e constant and activation

energy indicated that solid-state diffusion controlled.

Increasing pack aluminum content from I to 5 weight percent shifted

control of coating formation from the _as phase to the solid-state in the

16-hour, 1093 ° C NaBr activated pack.

Regardless of the rate controlling step, the kinetics of coating

formation were parabolic. The activation energy for coating formation

controlled by solid-state diffusion was 88 kc_I/mole.

Similar coating microstructures and weight gains were obtained for

each halogen regardless of whether its source was a sodium or annnonium

halide.

INrlRODUCTION

Aluminide coatings are commonly used to extend the llfe of super-

alloys in the oxidation/corrosion/erosion environment encountered in gas



3

turbines (I). Such protection is provided by aluminum oxide scales which

preferentially form on the _-_i phase which is analogous to NiA/ in the

Ni-A! binary system. Generally these intermetallic alumini_le coatings

are diffusion formed by exposing the blade or vane alloy surface to an

aluminum-rich environment at elevated temperature. The aluminides may

be applied by a number of methods including pack cementation, slurry

spraying and sintering, and slurry spraying and fusing in the presence of

a fluxing agent (2,3). The pack cementation method is the most estab-

lished and commonly used technique for large scale batch processing of

engine components currently in commercial flight service.

Although the commercial pack aluminides are performlng successfully

in Lhe 700 ° to 1000 ° C metal operating temperature range of current

engines, the requirements of higher operating _emperatures for improved

engine performance with even longer times bet%een overhaul will place

ever rare stringent demands on coating technology. Even if new coating

systems come into use for these high-temperature needs, the relatively

low cost aluminide coatings will continue to be used at peak tempera-

tures to ii00 ° C. One way to improve s,_ch aluminide coatings is by

gaining a more thorough understanding of the pack cementation process

and then using this insight to optimize pack conditions for each

alloy and application.

A fairly extensive background on pack aluminizing exists in the

literature, but knowledge of =he effect of pack variables on coating

structure and performance remains far from complete (2,4-6). Goward and

Boone (5) have summarized the formation mechanisms for aluminide coat-

ings. They formulate two c!assifications:(1) the low-temperatuze, high-
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activity pack and (2) the high-temperature, low-ac_ivity pack. Eachcoat-

ing class has its peculiarities and advantages. The t:¢o step hi_h-

activity process (application followed by diffusion annealing) tends to

first form MiAI3 which reverts to MAI on annealing. Suchcoatings incor-

porate su!,strate constituents and microstructural features, whereas the

low-activity process (which also may require two steps) tends to form MAI

and to incorporate only selected substrate constituents (4). In the high-

activity process, aluminum is supplied at a rate much greater than it can

react to form _-NiAI. Thus Ni2AI 3 is formed by :d diffusion of AI.

In the low-activity process the -ate of supply of aluminum is less tbau

the rate at which nickel can be supplied through 8 and thus nick_l-rich

is formed. The advantages derived from each pack clas_ might be con-

ferred upon a coating by a one-r_ep hybrid pack in which aluminum is

present at unit activity and the temperature is high enough to maintain

formation.

The purpose of this study was to develop a fuller understanding of

the important processing variables, transport mechanisms, and thermody-

_amlc_ of the pack aluminizing process. This was done by studying the

effect of several pack activators, pack compositions, temperatures_ and

times on the thickness and structure of pack aluminide coatings formed on

nickel-base superalloy IN-lOO in hlgh-activity, high-temperature hybrid

packs.

Prior exploratory studies evolved a pack consisting of 1 weight per-

cent NaCI, i weight percent A1 with the balance inert AI203 filler to

which the substrates are exposed for 16 hours at 1093 ° C under an argon

atmosphere. In this study the fluorides, chlorides, bromides, and iodides

of sodium and ammonium were used as activators. Pack times were varied
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from 3 .= ?4 hours, pack temperatures were varied from 982 ° to 1149 ° C,

and activator and aluminum concentrations were varied over ihe range ot

1 to 3 and I to 5 weight percent, respectively.

The coated specimens were evaluated by weight gain, optical metal-

lography, microhardness measurements, electron microprobe raster

sic rography (EMP), X-ray fluorescence (XRF), and X-ray diffraction (XRD).

EXPERIMENTAL PROCEDURES

Coat ing Deposition

Cc_merclally cast IN-100 having a nominal composition of 5.5 w/o A1,

15.3 w/o Co, 9.6 w/o Cr, 3.2 w/o Mo, 4.3 w/o Ti, 0.9 w/o V, 0.17 w/o C,

with the balance nickel and minor trace elements was the substrate used

for Lhis study. Specimens were cast in two configurations: 5.1 - 2.5

• 0.25 cm coupons and 10.2 x 2.5 x 0.44 cm erosion bars. Specimen edges

were radiused to 0.04 to 0.08 cm by abrasive tumbling or grinding on a

water-wetted !alt sander. Both types of specimens were then grit blasted

with -I00 mesh AI203 to produce a uniform matte flnlsh, rinsed, measured,

vapor degreased, rinsed in distilled water and weighed prior to placement

in the pack.

The pack box consisted of an aluminized Incooel retort as shown In

cross section in Figure I. The specimens were rested in a premixed powder

consisting of Alcoa A-1 _rade -i00 mesh alumlna powder, -I00 me:_ 99 per-

cent pure A1 and reagent grade activator salt. The packs contained at

least [ weight percent A1 and 1 weight percent activator. The balance

was AI203. In one NaI activated pack the activator content was raised to

3 weight percent and in one N_r activated pack the alumlnum content was

raised to 5 weight percent.

i....
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The assembled pack was purged for one hour with high purity argon

prior to insertion into the preheated box furnace which was controlled to

:15 ° C, The packs required about one hour to heat up to the fu_naze tem-

perature. Pack times are reported as time at temperature rather than as

time in the furnace. Argon flow was maintained at 0.057 m_/hr throughout

the time the packs were above room temperature. Upon completion of the

scheduled exposure, the pack was removed from the furnace and cooled to

room temperature. The specimens were removed from the powder, brushed,

rinsed in distilled water, and weighed to determine aluminum pick-up.

Additional Evaluations

Metallograph£c cross sectio_._ of some specimens in the as-coated con-

dition were examined to evaluate the effect of the various pack conditions

on coating structure and thickness. In addition, mlcrohardness measure-

ments were nmde with a Knoop indentor driven by a 200 gram load. EMP

analyses by electron back scatter and element X-ray raster micrography

were performed on some metallographic cross sections of the coated speci-

mens to determine qualitative element distributions. Also, XRF analyses

in situ and XRD analyses of scrapings and in situ were performed.

The pack materials from completed 16 and 24 hour, 1093 ° C, NaCl acti-

vated packs were analyzed for Cl, Ea, and AI. Three bulk samples from the

24-hour pack were leached to extract the following elements: one sample

was water leached to extract CI and A1 present as soluble halide salt;

another was HCf leached to extract Na and AI; and a third was given a

redundant NaOH leach to check the extraction of Cl and AI. Na was ana-

lyzed by fl_m emission spectroscopy, A1 was determined by atomic absorp-

tion spectroscopy, and CI was determined by spectrophotometry using the

\



7

mercuric thiocyanate procedure. Sequential leaches on single samples

were used to anaiyze a bulk sample and a sample taken from within 0.5 c_

of the specimen surface in the 16-hour pack.

RESULTS

The results of aluminide coating deposition on IN-IOO in packs acti-

vated with the halides of sodium and ammonium are presented in Table I,

Effect of Time in Chloride Activated Packs

Coating deposition times of 4, 8, 16, and 2A hours at 1093 ° C were

used with the baseline NaCI activated pack. As shown in Table I, the

scatter wi_h!_ a pack was generally small. However, there was more vari-

ation in coating weight and thickness between packs as primarily observed

in the 16-hour packs. This variation influenced coating composition and

microstructure. A satisfactory explanation _or this behavior could not

be found. Variations in temperature; variable levels of residual oxygen,

nitrogen and moisture in the assembled packs, or incomplete mixing of the

pack ingredients may be responsible.

XRD analysis indicated that the coatings deposited by 1093 ° C NaCI

activated packs were primarily B-MA1. Ni2AI 3 was detected in situ as a

minor coating phase in a coating put down in 8 hours and in the heaviest

coating put down in 16 hours.

Photomicrographs of coatings deposited by the NaCI activated packs

are presented in Figure 2. The zone adjacent to the substrate which

etched dlstln_tly lighter in the 4, 8, and 16 hour pack coatings is of

relatively constant thickness tl6 to 30 micrometers) as a function of

time compared to the growth of the outer or primary coating layer (32 to

77 micrometers). In all coatings a discontinuous layer of carbides aim-
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ilar in appearance to the sub_trate carbides was clearly visible in the

as polished samples. The sa:nples coated for 4 and _ hours have micro-

structures characteristic of "iow-activity" pack coatings with carbidos

concentrated in the light etching zone adjacent to the substrate (5).

In the samples aluminideu for longer times the carbide_ also penetrate

the primary layer. Some substrate carbide depletion (not shown) was

noticeable after 16 hours. After 24 hours the thickness of the substrate

carbide depleted zone was comparable to the coating thickness. Since the

carbides in the coating are tlch in Ti, Mo, and V as were the substra_e

carbides, they are presumed to be of the _C type (7). Their distribution

and the occurrence of carbide depletion of the substrate indicates for-

mation o£ these carbides in the c:.atlng by precipitation as well as by

inclusion as a result of coating growth. An additional minor coating

phase, revealed as the light etching particles concentrated primarily

in the lighter etching zone, is rich in Cr, No, and V and lean in Ni, Co,

and Ti. Occasional AI203 inclusions (large dark particles) and other

particles (primarily rich in Cr) are also found in the primary layer.

The coating deposition data for NaC1 activated packs, as plotted in

figure 3, were fit to power law growth equations

x = (kt)i/n; w = (k't) I/n' (I)

appropriate for diffuqion through a growing phase or depleting zone in

the pack. Analysis of thickness (x) and weight (w) data gave I/n and

staT_ard deviation values cf 0.54_0.i0 and 0.56±0.12 for thickness and

weight data, respectively, indicating parabolic behavior. Fitting the

tilickness data to irabollc growth equation (n I 2) gives a rate con-

stant (k) of 1.6_10- cm2/sec with a standsrd deviation of ±0.4x10 -9 cm2/

_RC •

7
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The data for NH4C1 activated packs, as plotted it. Figure _, were /it

to the power law growth equation. Using the standard ceviations found

for Nag1, the values oi l/n and their standard deviations are 0.46t0.!0

and 0.49±0.12 for thickness and weight gain data, respectively. These

values suggest that parabolic kinetics prevailed in NH4CI active ted packs.

The parabolic rate constant was 1.3t0.4_I0 -9 cm2/sec (again using :he

standard deviation obtained for NaCl.

Effect oi :ime - NaBr Activated Packs

Microstructures of coatings deposited in 4, 8, 16, and 24-hour

I weight percent alu=inum Nabr actIJated 1093 ° C packs are presented

in Figure 4. The outer inclusion free zone of the coatings deposited

in 4, 8, a_d 16 hour packs shows a transition in etching behavior _s

a function of depth not seen in coatings deposlted in NaCI activated

packs. This is indicative of a transition from Al-rich MAI at the

surface to Al-lean MA1 in the coating interior. (4). The interface

between the inclusion-free outer zone and the inner zone is quite ir-

regular in NaBr actlw -J packs when compared to the interface developed

in _aCl activated packs (Fig. 2). This irregularity is indicative of

sensitivity to small local variations in pack composition as previously

reported by Brill-Edwards and Epner (6).

The aluminum weight gain data are plotted against pack time in Fig-

ure 5. When f_t to the power law rate equation, I/n and standard devia-

tion values of 0.44±0.13 and 0.44±0.04 were obtained for thickness and

weight gain data, respectively. Thas coating formation adheres fairly

well to a parabolic growth law. The parabolic rate constant was

7.9_I0 -I0 cm2/sec with a standard deviation of ±2.3xI0 -I0 cm2/sec. This

is Less than the parabolic rate constants calculated for coating formation
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in chloride activated packs. The differences in rate constants, coating

microstructures, and sensitivities to local variations in pack composi-

tion between coatings formed in chloride and bromide activated packs may

be indicative of a difference in the rate controlling step in coating

formation in these packs.

Effect of Temperature

Coating deposition temperatures of 982 °, 1038 ° , 1093 ° , and 1149 ° C

were used with NaCI activated packs run for 16 hours. Inclusion of data

from 15-hour 1093 ° C packs is felt to introduce a negligible error. The

Io R of coating weight squared at constant time is, to a good approxima-

tion, a linear function of reciprocal absolute temperatuL? as can be seen

from Figure 6. A +15 ° C variation in temperature gives an 18% increase in

coating thickness. Regression analyses of weight gain and coating thick-

ness data for assumed parabolic behavior gave activation energies of

88 Kcal/mole. The standard deviations of the activation energy (slope)

were zll and ±13 Kcal/mole for the lines fit to thickness and weight data,

respectively.

XKD results confirmed that the primary coating phase was 8. Photo-

micrographs of coatings deposited at each of the four pack temperatures

are shown in Figure 7. Coatings deposited at 982 ° through 1093 ° C are

very similar in general microstructure. They all have the characteristic

inclusion-free outer or primary B layer and a distinctly defined,

lighter etching zone having a high concentration of MC carbide inclusions.

Second phase inclusions are concentrated at the inner part of the primary

layer in the 982 ° and 1038 ° C deposlmd coatings as they were in the coat-

ing applied in the 8-hour 1093 ° C pack. Longer times or higher tempera-
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_ures spread the distribution of these particles throughout the outer

layer. The growth of the primary £ layer was muctl more sensitive to

temperature than was the growth of the secondary zone adjacent to the

_ub_trate. Carbide depletion of the substrate to a depth comparable to

the coating thickness (not shown), recrystaliization of the columnar sec-

ondary zone, formation of a layer of _ (nickel solid solution) at the

coating _ubstrate interface and growth of a zone of large equiaxed grains

essentially free of second phase inclusions in the outer B layer have

all occurred in the coating deposited at 1149 ° C. The coating is also

considerably softer than coatings deposited at lower temperatures. These

features are characteristic of a partially depleted aluminide coating on

IN-IO0 (8). In summary, coating microstructures obtained in 982 ° or

1038 ° C 16-hour packs (Fig. 7(a,b)) and 1093 ° C _ and 8-bout packs

(Fig. 2(a,b)) have microstructures characteristic of low-activity pack

coatings (i.e., a single phase B outer coating zone) whereas the coat-

ing microstructures obtained at higher temperatures or longer times are

hybrids incorporating features found in heat treated high-activity pack

coatings and low-_ctivity pack coatings as discussed by Goward and Boone

(5).

Effect of Activators

The results of activator variation in 16-hour 1093 ° C packs are

listed in Table I and plotted as bar graphs in Figure 8(a,b). In all

cases XRD analysis of the coatings detected 8 as =he major coating

phase. Examination of Figure 8(a,b) indicates that aluminum pick-up

generally increases with decreasimg atomic number of the halogen. XRF

analyses of _he surface (Fig. 8(c,d)) indicated tha_ the trend for sur-
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face nickel content was approximately the inve'_, of the trend for alumi-

numpick-up; i.e., surface nickel content g_necal' increased with increas-

ing atomic numberof th_ halogen. Theseobservations indicate that the

ability of higher molecular weight halogens to deposit aluminum is less

than that of lower molecular weight halogens. Thus gas phase kinetics

and thermodynamicsmust play a significant role in aluminum deposition

under some ¢ondition_.

The changes in halide and the accompanying changes in the rate of

coating formation have an effect on the coating microstructure and phase

distribution as can be seen in the photomicrographs in Figures 9 and 10.

The coatings formed in 16-hour fluoride and chloride activated packs have

microstructural features derived from both the heat treated high-activity

and the low-activity pack classifications. The bromide and iodide acti-

eatated pack coatings (Figs. 9(c,d) and 10(c,d)) have microstructural

features peculiar to low-activity pack coatings. Aluminum content in

these coatings is generally lower than in lower _emperature or shorter

time NaCI activated pack coatings having about the same weight (Figs. 3(a,b)

and 7(b)). Consequently, the coatings formed in bromide and iodide acti-

vated packs are generally softer than coatings formed in corresponding

fluoride and chlozide activated packs. However, they have microstructures

similar to these NaCI activated pack coatings.

Effect of Pack Composition

An increase in pack aluminum and NaCI content from 1 to 2% had no

significant impact on aluminum pick-up in a 1093 ° C, 16-hour pack. Also,

an increase in Hal content from i to 3% had no significant impact on alu-

minum deposition in a 1093 ° C, 16-hour, 1% aluminum pack. However, an
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lr_cre,i_e o*. aiu:::inum _ontent from 1 to 52 in a 1% NaBr, 1093 ° C, i6-ho_r

pac, increased alumlnu::i pick-up from 6.8 to 16.1 rag/ca'. 'the .m:crostruc-

t,;re ,'! thi,- ce,itiqg, sho'_'n in Figure I1, i:_ very similar to microstruc-

_'.,res o: L6 and 2a-hour N_CI_ deposited coat.ings. This sensitivity to

pa_k aluminum content indicates ti_at gas phase kinetics play a sign:f-t-

, ant ,.,le in ti_e rate ot alurainum deposition xn NAB: activated packs.

,a':::lar beh._vior could be anticipated in NH&Br and iodide activated

i,.hk.- ba._ed on the strong similarities between coatS ngs put down by these

pack_ and the i weight % A1. NaBr activated pack.

DISCUSSION

Pack Stability

i:: t: _- ,.ttadv ,Jlu_tnidt, ¢.v,,tin_:s were depc_dted on IN-100 in a semi-

i,,'t_ -,._ie._;. ','_e .tbliit; :,' _uch a system to maintlltn stable bulk pack

.:i::=_n,,:: ,lep,;_;ti,m _ _tpabllttv throughout an experiment is a natural first

,,,b:e:" t,: ii_,u,_I_n. For example, ,t r,aximum in coating microhardness

.., ..... b_,.t.,:t.4 itt 16 |lo,:r_ and Ni2A1 * was detected as a minor phase only in

_- ,in! to-hour coatings deposited in 1093 ° C, NaCl activated packs. These

b-_-:',,ati,m._ :n,t: be indicative of a decline in bulk pack aluminum deposi-

t_,'n capabi llty with time or may merely be due to the growth of a depleted

,_,,ne ;n th_ pack adjacent to the speci_n surface,

To obtain some feeling for the stability of the various packs and

evtentu_lly permit an analysis of the kinettcs of aluminum deposition,

thermodynamic analyses for the initial bulk pack compositions were per-

formed. The re._ult._ of the thermodynamic analyses of the bulk pack con-

poxitton._, a, dlscu_ed tn detail in appendix A, are presented in

l'ab!,_, I I. on the bast._ o{ cottdensed phases presen,.., the packs fall into
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three groups: sodium halide activated packs with N:_X(1) and AI(1) pres-

ent; NH4F acti,Jated packs with A IF3(_) and AIN(s) present; and NH4X

(X = CI, Br or I) activated packs with AI(i) and AiN(s) present. Based

on the nature of the condensed phases present at local equilibrium in the

bulk pack as listed in TaP!e II, the sodium halide and ammonium fluoride

activated packs should be stable as a function ef time whereas the other

a_nc_ium halide activatad packs may not be stable.

The results of CI, Na, and AI analyses of pack material from a 24-

hour NaCI activated I093 ° C pack as listed in Table III did not confirm

that a significant d_crease in bulk pack aluminum deposition capability

occurred. Calculation of the partial pressures of reactive species in

the pack at 24 hours from the results of the chemical analyses gave values

equal to or greater than those calculated for the initial conditions.

Thus the absence of Ni2AI 3 in the 24-hour pack is attributed to formation

of a depleted zone in the pack at the specimen surface. More direct evi-

dence of depleted zone formation was obtained from XRD and chemic_! anal-

yses of samples taken from the bulk pack and from within 0.5 cm of the

sample surface after completion of a 16-hour, 1093 ° C NaCI activated pack

as reported in Table Ill. Aluminum was detected by KRD as a minor phase

in the bulk pack but was not detected at the specimen surface. Conversely,

NaCI was detected as a possible minor phase at the specimen surface but

was not detected in the bulk pack. Chemical analyses of these samples, as

listed in Table III, confirm the XRD results. The AI content of the bulk

pack was considerably higher than that of the pack close to the specimen

surface whereas the Na and C1 constants of the bulk pack were found to be

lower than at the specimen surface. Thus a depleted zone is formed in

\
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the packs. Fo_ation of a depleted zone in aluminiding packs was previ-

ously reported by Bri]l-=_dwards and Epner (6). An idealized sketch of

the depleted zone is shown in Figure 12. The actual depleted zone prob-

ably does not show an abrupt transition since gaseous diffusion permits

gradual depletion of aluminum over an _xtended transitiop zone.

Since no condensed halide source is present in NH4X (X = CI,Br,1)

activated packs whereas NaX(1) is present in corresponding sodium halide

packs the stability of the NH4X packs may be considerably lower than that

of NaX activated packs. Also, for example, extremely high initial depo-

sition rates may be obtained with NH4CI during the early part of the

coating cycle when the partial pressure of AICI(g) is more than an order

of magnitude higher than in the NaCI activated pack. However, the coat-

ing deprsition data for NaCI and _IH4CI activated packs, plotted in Fig-

ure 7, suBgest that the NH4X (X = CI, Br, or I) activated packs behave

similarly to _aX actlvated packs in the sense that initial deposition

rates are not significantly different and that rapid dilution of the

NH4CI activated pack does not occur in spite of the absence of a con-

densed halide phase. In addition, there is strong correspondence between

the microstructures and weights of coatings applied by corresponding

halides of sodium and ammonium as can be seen from Figures 9 and I0 and

Table I.

Pack Kinetics - Experimental

In this study parabolic rate constants of 1.3±0.4,10 -9 cm2/sec for

NH4CI activated coating deposition and 1.6±0.4×10 -9 c_2/sec for NaCI acti-

vated coating deposition were obtained. These values are less than rate

constants reported by Janssen and Rieck (9) for growth of NiAI between
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Ni2AI 3 and Ni3AI and for nonstoichiometric NiAI from NiAI and Ni. Extrap-

olation o[ their results to 1093 ° C gave rate constants of 5_I0 -9 cm2/sec

for the for_.ar reaction and 6_i0 -9 cm2/sec for the latter. The differ-

ence between rate constants for coating formation on IN-IO0 and diffusion

in binary couples could be due to both the effects of solutes such as

Cr, Co, and Ti derived from the IN-IO0 substrate and to the order of mag-

nitude var_ ation in diffusivity between stoichiometric NiAI (in .,_ich the

diffusivity of nickel is a minimum) and nlckel-rich NiAI (IO) (which con-

trols layer growth as determined by Janssen and Rieck).

Also, in this study an activation energy of 88±13 Keel/mole was ob-

tained for the deposition process in NaCI activated packs. This valre is

in poor agreement with a value of 41 Kcal/mole reported by Janssen and

Rieck (9) for diffusion of nickel in _ as determined by layer growth

studies. However, the activation energy falls close to the upper end of

the range of values f_- nickel diffusion in NiA1 reported by Hancock and

McDonnell (10): 73.4±2.3Kcal/mole for stoichiometric NiA1 to 42.5±6.3

Kcal/mole for the 48.3 atom Z Ni composition. The activation energy is

also in agreement with the activation energy of 81 Kcal/mole reported for

Co diffusion in NiA1 by Berkowitz et al. (ii). Based on the coating

growth rate constants and activation energies observed in this study and

their reasonable agreement with data for the NiAI system (9-ii), we con-

clude that nickel diffusion through the coating may be the rate controlling

step in NaCI and NH4CI activated packs run between 982 ° and 3.149 ° C. Addi-

tional support comes from metallography and XRD results which indicated

that the coating was primarily S and from the observed insensitivity of

NaCI packs to 1% variations in aluminum and activator content.
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In NaBr activated packs high sensitivity of coating weight to pack

aluminum content was observed. The kinetics of aluminum deposition in

i weight % NaBr packs adhered reasonably well to a parabolic growth law,

but the parabolic rate constant (7.9±2.3210 -10 cm2/sec) was smaller than

in NaCl activated packs (1.6±0.4×10 -9 cm2/sec). Ba_ed on the sensitivity

of NaBr packs to aluminum content and the lower al_ [num pick-up of I wt %

A1 bromide and iodide activated packs compared to , ,loride and fluoride

activated packs, the authors conclude that gas_hase kinetics was the rate

controlling step in aluminum deposition from bromide and iodide activated

packs containing i wt % aluminum.

Pack Kinetics - Analytical

To further elucidate the role of gas phase kinetics in aluminide

coating formation, analyses of aluminum transport from the bulk pack

through the pack depleted zone to the surface of the coating were car-

ried out. The starting points for the analyses were the thermodynamic

calculations discussed in appendix A and the pack depletion zone model,

Figure 12. The analyses of gas phase kinetics are discussed in appen-

dix B where the calculation of instantaneous fluxes of aluminum for a

simplified case is outlined. The instantaneous flux is given by

where D.
1 and Pi are the diffusivlty and partial pressure of the ith

aluminum bearing species wiuh the prime referring to the sample surface

and d is the diffusion distance. The computations includL_ mass be1-

ances on H, X, and Na and allowed for condensation of NaX(1) as approprl-

n

_DI(P i - P_)

NAId i=l

-'f-- = RT (2)
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ate. In NH4Xactivated packs dilution by 9.8 moles of argon (4 hr of

argon flow) wasused to arrive at bulk pack compositions. In the case

of NH4Fpseudo-equilibrium bulk pack compositions were used since dilu-

tion with 9.8 moles of argon results in disappearance of the AIF3(s)

phase. The comFutations were madefor an assumed surface aluminum ac-

tivity of ]xl0 -2. This is a reasonable choice for average aluminum ac-

tivity in view oi the fact that Steiner and Komarek (12) report an ac-

tivity of Ixl0 -2 for aluminum in stolchlometrlc NIAI at 1000 ° C. Results

are listed in table IV for major diffusing species.

From the instantaneous fluxes the diffusion direction of each species

in the pack depleted zone was ascertained. These are illustrated in Fig-

ure 13 for (a) the simplified model for NaX activated packs in which

NaX(1) condensation was not consideredj (b) the complete model for NaX

activated packs where NaX(1) condensation was considered and (3) for NH4X

activated packs. Instantaneous fluxes of major species are compared to

the net instantaneous aluminum flux in Figure 14, Aluminum is deposited

prima[!ly by AIX. maX(1) condensation (Fig. 14(b)) augments aluminum

deposition by not requiring halogen removal by AIX 2 and AIX 3 diffusion

(Fig. 14(a)). In reality, the actual fluxes for NaX activated packs are

probably bounded by the complete and slmpllfied models. Evidence of max

condensation in the depleted zone was obtained. However, some depletion

of Na as a result of reaction with alumina and by transport out of the

semi-open system does occur.

Computed instantaneous fluxes were relatively insensitive to changes

_n assumed surface aluminum activity. A tenfold decrease in surface alu-

minum activity increased the computed flux by only a factor of 2.



19

In addition to aluminum being deposited, loss of substrate species

from IN-100 can contribute to observed net specimen weight change and

thus cause misinterpretation of coating weight. Analyses were performed

for Ni and Cr. Very small amounts of nickel are lost from the substrate

a_ nickel and nickel halide. At 1366 ° K the partial pressure of nickel

over the alloy is only about I0-I0 a_m (13). This gives a nickel flux

of about 10 -14 moles/cm2-sec from the coating surface to the bulk pack.

The estimated Cr partial pressure over IN-IO0 is 0.i PCr = 1"3×I0-7

atm at 136_K (13). This gives a Cr flux of about 1.3xlO -11 moles/cm2-sec.

Thus, at worst, the chromium weight loss in a 16-hour 1093 ° C pack was

about I% of the aluminum weight gain.

The rate of aluminum deposition dw/dt in mg/cm2-sec was computed

from the instantaneous fluxes according to the following equation:

The term _ = 1 defines the growth of the pack depleted zone in terms of
w d

coating weight w and pack aluminum content _ = 8 mg/cm 3 in 1 wt % A1

packs. The term E/I corrects for diffusion through a porous medium.

The effective transport area of the pack is to a good approximation, equal

to the pack porosity _ = 0.79. In addition, the transport path is non-

linear and a correction factor 1 = 4 was arbitrarily assumed. The third

Integration gives :term converts from moles of aluminum to milligrams.

w 2 = 2pc /NAId _

The aluminum deposition rate constants

kA1 " _ 2-7x1.04

(4)

(5)
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are l_sted in Table IV. Inclusion of sodium h_l/dt _ondensatfvn re-

sults in a 1.7 to ll-fold increase in kAl depending on the halide. The

moles of NaX(1) condensed are about equal to the moles of AI deposited

according to the complete solution.

Predicted aluminum weight gains for 16-hour 1 weight % A1 packs are

also listed in Table IV. These predicted values are plotted against ob-

served aluminum weight gains in Figure 15. For NaX activated packs an

average predicted value was used. The good agreement between observed

and predicted coating weights in bromide and iodide activated 1 weight %

A1 packs confirms that deposition is controlled by gaseous diffusion.

The choice of an _ value of 5 would have given better agreement. Ear-

lier it was stated that solid-state diffusion of nickel may be the rat=

controlling step in NaC1 and NH4CI activated packs. However, good agree-

ment between observed and predicted weights based on the gaseous diffusion

model indicates that gaseou_ diffusion controls coating deposition in

N'H4CI activated packs. There appears to be a balance between the pre-

dicted ability of the pack to supply aluminum and the observed ability of

the subs=rate to absorb aluminum via nickel diffusion in NaCI activated

packs. However, in i wt % A1 packs activated with NaCl, based on the

observed rate constant and activation energy the solid-state diffusion

step can be considered rate controlling. If gaseous diffusion was rate

controlllng a pseudo-activatlon energy of 50 Kcal/mole would have been

observed rather than 88 Kcal/mole. Similarly, in the 5 wt % AI pack

activated with NaBr the agreement between observed and predicted coating

weights based on the gaseous diffusion model is good. However, based on

coating weight and microstructure, the solid-state diffusion step can be

\
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considered rate controlling.

In fluoride activated packs predicted coating weights based on gase-

ous diffusion models were 2 to 5 times greater than observed weights_

The net aluminum deposition rate constants for assumed parabolic behavior,

when put on a thickness basis (using a conversion factor of 7.7_i0 -4 cm/

mg/cm2), were 1.0_10 -8 and 4.8×10 -g cm2/sec for the NH4F and NaF acti-

vators, respectively. These rate constants are greater than rate con-

stants for NiAI growth as determined from Janssen and Rieck (9) by more

than an order of magnitude. Thus, a posterlorl, solld-state diffusion

controls the rate of coating growth when the net aluminum deposition rate

constant is greater than 5×10 -9 cm2/sec (8.4xi0 -3 mg2/cm4-sec) at 1093 ° C

in the Ni-AI system. Since observed coating weights were limited to

15.3±3.3 mg/cm 2, solid state diffusion controls deposition on IN-IO0 when

the net aluminum deposition rate constant exceeds 4.3±1.8×10 -3 mg2/

4
cm -sec or 2.5±I.I×I0 -9 cm2/sec. Predicted coating weights for fluoride

activated packs are plotted on a solid state diffusion control basis in

Figure 15.

CONCLUDING REMARKS

In this experimental and analytical study of high-temperature packs

having aluminum present at unit activity, MAI coating formation was con-

trolled by either solld-state or gaseous diffusion. Although the experi-

ments were performed on IN-100, the analysis is quite general and may be

applied to any nlckel-base superalloy. Based on these results it appears

that the classification of alumlnlde packs into "high-activity" and "low-

activity" as proposed by Goward and Boone (5) is misleading. Coating

formation can be more accurately described in terms of the ability of the
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pack to supply aluminum and the ability of the substrate to supply nickel.

The primary variable is temperature rather than pack aluminumactivity.

This is illustrated in Figure 16 where the classifications proposed by

Gowardand Booneare shownon the left. Coatings s_milar to those pro-

duced in low-activlty packs can be produced in packs having alunrinum

present at unit activity provided that they are carried out at high-

temperature as illustrated on the right of Figure 16. The coating forma-

tion process can be controlled either by diffusion in the gas phase or

solid phase depending upon the activator and pack aluminum content.

SUMMARY OF RESULTS

The effect of variation of pack activators, pack compositions, tem-

perature, and time on the thickness and structure of alumi-ide coatings formed

on nickel-base alloy IN-100 was studied in a series of one-step packs in

which aluminum was initially present at unit activity. Times were varied

from 4 to 24 hours and temperatures were varied from 982 ° _o 1149 ° C in

NaCI activated packs. The other halides of sodium and the annnonium

halides were primarily used to activate 1093 ° C, 16-hour packs. Through

an analysis of the thermodynamics and kinetics of reactions in the pack

and comparison with published diffusion data in the Ni-A1 binary system

the mechanism of coating formation in each pack was established. The

following are the results of this study:

i. Coating weights can be successfully predicted from analyses of

pack thermodynamics and diffusion in the pack and coating.

2. Pack temperature rather than pack aluminum activity controls the

principal coating phase formed.

3. The halide pack activators ranked in order of decreasing aluminum
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weight gain in I weight % aluminum packs are: F _ C1 _ Br > I.

4. Solid state nickel diffusion was the rate controlling step in

coating formation in fluoride activated packs. Gaseoas diffusion con-

trolled the rate of coating formation in 1 weight % AI bromide and iodide

activated packs and NH4CI activated packs. In NaCI activated packs con-

taining i weight % AI the predicted ability of the pack to supply aluminum

was in balance _ith the ability of Lhe substrate to supply nickel. How-

ever, the observed rate constants and activation energy indicated that

the solid-state diffusion step controlled coating growth.

5. An increase in pack alu_Inum content from i to 5 weight % shifted

control of coating formation from gas phase diffusion to solid-state

diffusion in 16-hour, 1093 ° C NaBr packs and resulted in a coating similar

in weight, thickness, and microstructure to those formed in NaCI activated

packs.

6. Regardless of the rate controlling step, the kinetics of coating

formation were near parabolic.

7. The activation energy for coating formation controlled by solid-

state diffusion was 88±13 Kcal/mole on IN-IO0.

8. Similar coating microstructures and weight gains were obtained

for each halogen regardless of whether its source was a sodium or ammonium

salt. Coating microst_-,ctures bore greatest resemblance to "low-actlvlty"

pack coatings with some features peculiar to '%Igh-activity" pack coatings

apparent in coatings applied for longer times or at higher temperatures.
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APPENDIXA

THERMODYNAMICS

Calculation of bulk pack composition at equilibrium was accomplished

with the aid of CEC 71, a computer program by Gordon and McBride described

in NASA SP-273 (14). The thermodynamic data for the program were taken

from the JANAF tables (15). Data for Nal(g), which were not available in

the JANAF tables, were computed from spectrochemical data by B. J. McBride,

Lewis Research Center (private co_nunication). Pack compositions prior

to establishment of equilibrium were computed from the pack starting ma-

terials.

To illustrate the calculation, the outline of an approximate hand

calculation method for sodium halide activated packs follows:

i. Chemical reactions

3NaX(1) + AI(1) = AIX3(g) + 3Na(g)

AI(1) + 2AIX3(g ) = 3AIX2(g)

_i(I) + AIX2(g ) = 2AIX(g)

Na(g) + X(g) = NaX(1)

2. Equations

a. Sodium balance:

o

b. Halogen balance:

Mx(g ) + MNaX(g ) +MNaX(1) + 3MAIX3(g ) + 2MAIX2(g )

o

+ MA1X(g ) " MNaX(_)

c. Equl]Ibrium - equation (I):

K3 - p_ P .
_a _3

(AI)

(A2)

(A3)

(A4)

(AS)

(A6)

(A7)
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d. Equilibrium- equation (2):

PAIX 3
(AS)

K2 = PAIX 2

e. Equilibrium- equation (3):

PAIX 2

K1 = (A9)
PAIX 2

f. Equilibrium- equation (4):

1
K 4 = (AI0)

PNaPx

o

Elimination of M_aX(c) between equations (5) and (6) permits the

resulting equation to be rewritten in terms of pressures. This leaves

five equations in five unknowns. The solution was performed for NaF and

NaCI activators. The results agreed with the computer program to within

20 percent for the former and 3 percent for the latter. The difference

was primarily due to exclusion of minor species in the hand calculation.

Results of the computer solutions are listed in Table II. In one case,

the NaF activated pack, the presence of AI203 was included in the machine

calculations. The species present at equilibrium were AI(1), AI, AIF,

AIF2, AIF3, A/O, AIOF, AI2F6, AI20 , A1202, A1203(S), Ar, F, Na, NaF(1),

NaF, NaO, Na2, and Na2F 2. No significant difference in the partial

pressures of F, AIF, AIF2, and AIF 3 were noted when the results were com-

pared with the calculation made with AI203 omitted. Thus AI203 was omitted

from all other calculations. One shortcoming of the analysis of the Na :_

activated pack should be noted: cryolite formation was not considered.

Since the cryolite melt is e_tensively dissociated (18) the impact of

cryolite formation on this a_alysis is considered small.
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PPENDIXB

KINETICS

Instantaneous fluxes of gaseousspecies from the bulk pack to the

substrate surface and vice versa were computedfor I atmosphere total

pressure and a surface aluminum activity of I_i0 -2. The results are sum-

marized in Table IV. Several checks on diffusion conditions were made

prior to performing the calculation. First, it was established that

diffusion occurs in the viscous flow regime. For molecular diffusion to

occur the pack particle size would have to be reduced from about I00 mi-

crons to about 0.I micron. Second, it was established that interchange

between argon and hydrogen occurs very rapidly in the NIi4Factivated

pack and therefore diffusivities were comp,,tedbased on argon as the

major constituent. The computation was performed for equilibrium condi-

tions after dilution by 9.8 moles of argon in NH4CI,Br and I activated

packs and pseudo-equilibrium conditions in NH4Factivated packs. Diffu-

sivities were estimated from the Gilliland equati _ (16):

0
mb/'J (BI)

D - p{vl/3 + ,I/3_2
\ a "b ]

Molar volumes at the normal boiling point were compumed from data in the

literature (17) and from an estimated value of 18 cm3/gm-atom for alumi-

nLIm.

In making the instantaneous flux calculations the roles of Nai(g)

and NaX in sodium halide activated packs and of 8X(g) and H2(g) in NH4X

activated packs were included. Solution of this problem involving as

many as ten simultaneous equations was accomplished on a digital computer.
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lh, _-.tant,Jn_*_u_, :in× c,_Iculation in outline form for a simplified case

: _r _.,>:active, ted ?acks wherein the roles of Na.(g) and NaX are neglected
&

follows:

. Chemical re_iction._

,. Bulk pack

Al(1) + X(g) - AtXl(g) _B2,

AI(1) ÷ 2x(g) - AIX2(s) (B3)

AI(i) + 3X(g) - AiX3(g) (B4)

b. Sur face

Substitute A1 (AI in NIAI) for AI(1) in equations (2),

(3), and (4).

,,. Equil_brium equat ions

a. Equation (2):

PX(g)aAI P4 a

t KI " PAlVl(g ) " P-T (BS)

I b. Equation (3) :
2 2

i "2 _X_(_)2_) P4a

= _ " P-T (B6)

c. Equation (4):

3 2

• Px(g)aAl P4 a

_3 " PAI;3(g ) " _ (B7)

For reactions iv the bulk pack =he aluminum activity is set equal to

PAI($)/PAI(1) = I. For reactions at the surface aluminum activity was

set at i,I0 -2 and the pressures are distinguished by primes.
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3. Instantaneous fluxes:

a. Aluminum to the surface:

NAI D1 (PI - Pi ) D2 (P2 - P2 ) D3 (P3 - P3 )

-_- = RT d + RT d + RT d (8)

The contribution of Al(g) diffusion to the net aluminum flux is

negligible.

b. Halogen balance at the surface:

0 = DI(P 1 - P_) + 2D2(P 2 - P_) + 3D3(P 3 - P_) + D4(P 4 - P_) (9)

! !

The unknowns are P_, P2' P3' P4" NAI/A and d. Multiplication of

both sides of equation (8) by d gives the combined variable NAId/A

and leaves five equations and five unknowns. Therefore, each pressure

and the instantaneous fluxes of all species can be estimated. Pi and

the instantaneous fluxes are listed in Table IV. Instantaneous fluxes

were found to be relatively insensitive to changes in surface aluminum

activity. A tenfold decrease in aluminum activity increases the net in-

stantaneous aluminum flux by a factor of 2.
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APPENDIX C

NOMENCLATURE

2
area, cm

activity of aluminum at the coating surfac*:, dimensionless

diffuslvity of the ith species, cm2/sec

diffusion distance, cm

equilibrium constant for the jth reaction

rate constant

path length correction factor

moles

molecular weight, grams/mole

aluminum flow, moles/sec at any instant

rate equation exponent

partial pressure of the i th species In the bulk pack, atm

partial pressure of the ith species at the coating surface, arm

activation energy, Kcal/mole

gas constant, cm3-atom/°K-mo]e or cal/°K-_ole

absolute temperature, OK

time, sec

molar volume at the normal boiling point, cm3/mole

coating welght, mg/cm 2

halogen atom, F, CI, Br, or I

coating thickness, cm

pack porosity

pack aluminum concentration, mg/cm 3
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TABLE I. - PACK ALUMINIDE COATING DEPOSITION PARAMETERS AND RESULrS

Act_vatoc

oc

NaF 1093

NaCl 982

1038

1038

1093

I
I
1

,I

1149

Nagr 1093

' II
!

'lNaI

NaI

NH4F 1

NH4CI

h'H4Cl i

NH4Br i

NH41 't

Temperature, Time, Weight Z Alualnus
hr

Activator Almalnum

I

2

I

16
16

16

16

4

8

8

15

15
16

16

24

26

16

4

8

16

16

24

16

16

16

3

16
16

16

plck-u E ,
=$Ic= L

i 13.3±1.2

i 2.6±0.1
I 6.0±0.6

'! 6.4±0.4
, 7.4

I 7.].±0.3
F

_ 7.9±0.1
b2 13.9±0.5

1 12.2±0.2

| 18.6±0.3
15.4

14.3±1.3

17.2+0.3

16.1±3.0

3.8
i

i. 5.5
6.8±0.2

5 16.1

1 8.4

1 5.1±0.3

1 5.9±0.I

1 15.7±2.9

4.6±0.2

10.5±1.6

7.6±0.1

5.2_+0.2

Coat ins

thickness,

108

18

40

46

48

50

62

79
115

107

115

132

35

48

52

136

86

50

115

42

90
73

53

XIUF X_D

(a)

.... , Major Minor phases

AI NI Ti ph,Le •
L

6.0 64 1.3 MAI Al2Cr j [ A1203

8.3 72 .2 MAI - j

9.1 72 .3 MA1 A1203 J
9.4 73 .1

7.1 74 0.I MAI NI.2al 3

- MAX -

7 7 b9 0.I .HA1 NI2AI 3

6.8 71 0.2 HA1

8.5 67 0.5 MA1

- MA1

- MAI

7.2 81 0.1 HA1

- MAI

7.4 78 0.i MAI

I ....

4.3 59 4.2 MAI

-- • -- MA_

7.1 74 0.3 MA1

5.4 81 0.I HA1

5.2 80 0.1 HAt
I

, o

aCounts relative to counts from IN-IO0 XI00.

bspacLng between spec£amns, 3.3 aa mini_I except ¢or thLs pack _ere 1.9 ca spac£nK was used.

A1203

AI2Cr3

NIO

A1203

Ti02
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TABLE 111. - RESIDUAL ACTIVITY OF 16-AND 24-11OUR

1093 ° C llaCl ACTIVATED PACKS

Cheaical Analy, ls

Sample Leach Is, C1, A1,

plm Plm plm

t;1. 24-hour. bulk 820 237 53
Eel 113 2072

gaOg 226 1995

Average values 113 232 b20_,

P2, 24-hour, bulk B20 230 33
8C1 56 947

IsOll 227 963

Average values 54 229 b955

16-hour. bulk B20 31 220 0
BC1 57 - 7540

ToLal values (a) 88 220 7540

16-hour, surface H20 88 327 0
HC1 55 - 360

Total values (a) 143 327 360

X-Isy Diffreczlon

Major Minor

phase phase

16-hour, bulk a-A1203

16-bout, surface o-A1203

Possible

minor

phase

At

NaC1
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